Supervised parametric and non-parametric classification of chromosome images
نویسندگان
چکیده
This paper describes a fully automatic chromosome classification algorithm for Multiplex Fluorescence In-Situ Hybridization(M-FISH) images using supervised parametric and non-parametric techniques. M-FISH is a recently developed chromosome imaging method in which each chromosome is labelled with 5 fluors (dyes) and a DNA stain. The classification problem is modelled as a 25-class 6-feature pixel-bypixel classification task. The 25 classes are the 24 types of human chromosomes and the background, while the six features correspond to the brightness of the dyes at each pixel. Maximum likelihood estimation, nearest neighbor and k-nearest neighbor methods are implemented for the classification. The highest classification accuracy is achieved with the k-nearest neighbor method and k = 7 is an optimal value for this classification task.
منابع مشابه
Supervised Feature Extraction of Face Images for Improvement of Recognition Accuracy
Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...
متن کاملComparison of Parametric and Non-parametric EEG Feature Extraction Methods in Detection of Pediatric Migraine without Aura
Background: Migraine headache without aura is the most common type of migraine especially among pediatric patients. It has always been a great challenge of migraine diagnosis using quantitative electroencephalography measurements through feature classification. It has been proven that different feature extraction and classification methods vary in terms of performance regarding detection and di...
متن کاملUnsupervised Feature Learning via Non-Parametric Instance Discrimination
Neural net classifiers trained on data with annotated class labels can also capture apparent visual similarity among categories without being directed to do so. We study whether this observation can be extended beyond the conventional domain of supervised learning: Can we learn a good feature representation that captures apparent similarity among instances, instead of classes, by merely asking ...
متن کاملComparison of Machine Learning Algorithms for Broad Leaf Species Classification Using UAV-RGB Images
Abstract: Knowing the tree species combination of forests provides valuable information for studying the forest’s economic value, fire risk assessment, biodiversity monitoring, and wildlife habitat improvement. Fieldwork is often time-consuming and labor-required, free satellite data are available in coarse resolution and the use of manned aircraft is relatively costly. Recently, unmanned aeria...
متن کاملA New Brain Segmentation Framework
We present a new brain segmentation framework which we apply to T1-weighted magnetic resonance image segmentation. The innovation of the algorithm in comparison to the state-of-the-art of nonsupervised brain segmentation is twofold. First, the algorithm is entirely non-parametric and non-supervised. We can therefore enhance the classically used gray level information of the images by other feat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pattern Recognition
دوره 38 شماره
صفحات -
تاریخ انتشار 2005